<table>
<thead>
<tr>
<th></th>
<th>Things That Matter</th>
<th>Why</th>
</tr>
</thead>
</table>
| 1 | Battery Chemistry | The various battery chemistries can have different:
 • Voltages – Open Cell and Operating
 • Operating temperature ranges
 • Self discharge rates, i.e. Shelf Life |
| 2 | Size | In general, larger batteries have;
 • Greater available energy (Capacity)
 • Higher discharge rates
 • Longer run times |
| 3 | Construction | Batteries are made in Cylindrical, Flat, and Coin/Button form factors
 • Cylindrical batteries are able to discharge at higher rates than flat, or coin/button cells.
 • Batteries made with wound electrodes have the highest discharge rate capability
 • Coin/Button cells have small form factors, but also low discharge rates. |
| 4 | Depth of Discharge |
 • Battery capacity is specified to end of life voltage
 • Over discharge leads to cell damage and leakage
 • Circuit designs must have voltage cut offs |
| 5 | Safety |
 • Primary batteries are not to be charged.
 • Battery cavities should be isolated from the circuits
 • Battery cavities should be designed with battery polarity control. |
| 6 | Temperature |
 • Battery performance declines at low temperatures
 • High temperatures increase self discharge and reduce shelf life |
| 7 | Environmental Conditions |
 • Temperature, humidity, shock and vibration all can reduce battery performance and damage the battery.
 • Please consult Duracell for safety and handling guidelines |
| 8 | Batteries are not AC Power Supplies |
 • Batteries are dynamic sources of power
 • The battery’s internal resistance rises with the depth of discharge
 • Power declines as internal resistance increases
 • Batteries are impacted by environmental conditions |
| 9 | Batteries have Shelf Life or “Freshness” limits |
 • Shelf life refers to the ability of the battery to retain capacity under specified storage conditions.
 • Different battery chemistries have different shelf life limits, ranging from 3 – 15 years depending upon the chemistry.
 • Rechargeable batteries lose energy at a high rate and need to be recharged weeks or months after the last charge. |
<table>
<thead>
<tr>
<th>Things That Matter</th>
<th>Why</th>
</tr>
</thead>
</table>
| 10. Intermittent vs. Continuous Discharge Affects Run Time | - Discharging batteries intermittently results in longer run times than with a continuous discharge.
- Designing discharge with an optimized pulse drain and duty cycle will result in the best run time |
| For more design help, contact Duracell’s Global OEM Sales and Consulting Group | www.duracell.com/OEM |